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ABSTRACT
In this paper, we present a method to generate realistic defensive
plays in a basketball game based on the ball and the offensive team’s
movements. Our system allows players and coaches to simulate
how the opposing team will react to a newly developed offensive
strategy for evaluating its effectiveness. To achieve the aim, we train
on the NBA dataset a conditional generative adversarial network
that learns spatio-temporal interactions between players’ move-
ments. The network consists of two components: a generator that
takes a latent noise vector and the offensive team’s trajectories
as input to generate defensive team’s trajectories; and a discrim-
inator that evaluates the realistic degree of the generated results.
Since a basketball game can be easily identified as fake if the ball
handler, who is not defended, does not shoot the ball or cut into
the restricted area, we add the wide open penalty to the objective
function to assist model training. To evaluate the results, we com-
pared the similarity of the real and the generated defensive plays,
in terms of the players’ movement speed and acceleration, distance
to defend ball handlers and non- ball handlers, and the frequency
of wide open occurrences. In addition, we conducted a user study
with 59 participants for subjective tests. Experimental results show
the high fidelity of the generated defensive plays to real data and
demonstrate the feasibility of our algorithm.
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1 INTRODUCTION
Analyzing players’ performance and behaviors based on statistical
and historical data is becoming an effective way for coaches in
National Basketball Association (NBA) to develop winning strate-
gies. For example, the analysis can help determine the line-up as
well as match-ups in a game and choose the offensive and defen-
sive strategies against the opposing team. It also can help players
identify their weaknesses so as to polish their skills. Among the
teams in NBA, the Houston Rockets are most well known for using
statistical analysis, which has become known as the Moreyball.
Recently, more teams, such as the Toronto Raptors, adopted similar
methodologies, with their analytics team even creating a system to
teach players what they should have done on a play.

Prior research in basketball games is mainly based on analyzing
broadcast videos, in addressing challenging problems such as player
tracking, perspective effect, dynamic camera motion, and occlu-
sions. Engineers in STATS LLC cooperated with NBA teams and
adopted an alternative way to prevent the occurrence of the above
mentioned problems when analyzing sport videos. They installed
static video cameras at the top of the stadium to track positions
of the players and the ball. Some of these data have been released,
making sports data analytics a promising research area.

We present a system that can generate realistic defensive plays
in a basketball game based on the ball and the offensive team’s
movements. By using our system, players and coaches can simulate
how an opposing team will react to a newly developed offensive
strategy for evaluating its effectiveness. To achieve the aim, we train
a generative adversarial network (GAN) to learn spatio-temporal in-
teractions between players’ movements. The network is composed
of a generator and a discriminator. The former takes a latent noise
vector and the offensive team’s movements as input to generate
defensive players’ moving trajectories; and the latter evaluates the
realistic degree of the generated results. These two components are
trained iteratively and alternatively to make the generated trajec-
tories becoming more and more realistic. Observing that a good
defensive play must prevent wide open between the ball handler
and the basket, we add a penalty term to the objective function to
assist training. Note that our convolutional neural network (CNN)
has the striking feature of being able to process variable length
sequences like recurrent neural networks (RNN). In particular, the
network is composed of 1D convolutional layers, with the ker-
nel moving along the temporal dimension to extract features that
capture players’ relative positions in a time span.

https://doi.org/10.1145/3240508.3240670
https://doi.org/10.1145/3240508.3240670


We conducted several experiments to evaluate themodels trained
with and without the penalty term, and an alternative implementa-
tion based on RNN. Figure 2 and the supplemental videos show the
results. To measure the realistic degree of the generated plays, we
compared the players’ moving speed and acceleration, distance to
defend ball handlers and non- ball handlers, and frequency of open
space occurrences. We also carried out a user study, involving 59
participants for subjective tests. On average, they had a 63% chance
of successfully distinguishing between the real and the generated
plays, compared to 50% chance by random guessing.

2 RELATEDWORKS
Basketball analytic has risen significantly over years and adopted
by many teams in NBA. Researchers in statistics and computer
science have also started working on new ways to analyze and
visualize the game. The works can be classified into several aspects.
Many of them are based on statistics and number crunching [5,
14, 18, 19]. They attempted to determine which player is a good
defender on specific locations on the court, and how efficient the
player is at defending an offensive player. Several works are about
predicting if the shot is a miss or make by analyzing basketball
and player trajectories [9, 20]. There were also works presented to
classify offensive strategies in basketball games [4, 21].

Understanding the player’s movement in a basketball game is
crucial in practicing and evaluating strategies. Zheng et al.[22]
presented a hierarchical policy neural network to generate long-
term trajectory of an offensive player based on the other nine player
locations on the court. The experiments show that the combination
of micro- and macro-policies is able to generate natural moving
behaviors of players. In addition to academic researches, Toronto
Raptors showcased a private system developed by their analytic
team 1, which determines where each individual defensive player
should position on the court while playing defense. While the
method used in the Toronto Raptors’ system is not disclosed, and
sometimes the players behave like superman in the introduced
videos, we present a generative adversarial network to generate
natural moving trajectories of defensive players.

Generative adversarial network is an unsupervised learning
that maps a latent noise vector z to an outputG(z), which is widely
used in content generation [7, 11]. The network is composed of a
generator and a discriminator. The former is trained to generate
samples that can fool the latter; whereas the latter is trained to
differentiate the real and the generated samples. Because training a
GAN is difficult [1], several strategies were presented. Pathak et al.
[17] integrated the L2 loss into the training process of a GAN, and
verified its effectiveness. Arjovsky et al. [2] and Gulragini et al. [8]
presented Wasserstein GAN, which defines the loss by measuring
the earth moving distance between two probability distributions.
Compared to traditional GAN, Wasserstein GAN improves stability,
captures continuity of distribution distance, and adds meaningful
training gradients. Meanwhile, to control the output G(z), Mirza
and Osindero [16] introduced conditional GAN that is fed by not
only a latent noise vector z but also a condition y so that the output
becomesG(z |y). The presented work adopts both the ideas of the

1Lights, Cameras, Revolution. http://www.grantland.com/features/the-toronto-raptors-
sportvu-cameras-nba-analytical-revolution/

Wasserstein GAN and the conditional GAN. It considers the ball
and the offensive team’s movements as condition when generating
defensive players’ movements in a basketball game.

3 DEFENSIVE PLAYS GENERATION
3.1 Datasets
The training dataset is from SportVU, in which the ball R3 and
the players’ positions R2 on the court are tracked at 25 frames per
second. We parse the NBA play by play text 2 and then partition
the whole basketball game into independent plays. Each play starts
when the offensive team brings the ball across or inbound from
half-court, and ends when an offensive player takes a shot either
missed or made. In addition, we down sample the trajectories to
5 frames per second, and partition the plays into two subsets for
training (90%) and testing (10%).

3.2 Network architecture
Given the ball and the offensive team’s movements, we train a
conditional GAN to generate defensive players’ movements in a
basketball game. We choose GAN rather than supervised learning,
for example, input an offensive play and then output the corre-
sponding defensive play, because an offensive play can be defended
in different ways. Figure 1 shows the network, which consists of
a generator and a discriminator (critic network). The inputs of
the generator are a latent noise vector z and a condition vector y,
which encodes the ball and the offensive team’s player positions
in t frames. The generator first linearly projects the two vectors
to feature maps that have the same shape, and then adds the maps
together. This design allows the noise latent vector z to have global
influence on the entire trajectory, rather than players positions in
individual frames. The generator then passes the combined fea-
ture map through residual blocks [10] and a convolutional layer to
generate defensive players’ trajectories G(z |y).

The discriminator takes the ball, offensive and defensive players’
trajectories as inputs and determines the realistic degree of the
basketball game (players movement). The condition y is concate-
nated with the corresponding defensive players’ trajectories x in
the dataset and the generated trajectories G(z |y) to form real and
fake pairs, respectively. We feed the two pairs into the critic net-
work, which has a similar structure compared to the generator, for
training. The output of this critic network is a score that measures
the similarity of a real and a fake plays. Specifically, we minimize
the objective function

L(G,C) =Ey∼Pdata (Y ),z∼Pz (Z )[C(G(z |y)|y)]

−Ex,y∼Pdata (X ,Y )[C(x |y)]

+λ × Ex̂ ∈Pdata (X̂ )
E[(∥∇x̂C(x̂)∥2 − 1)2], (1)

where G and C are the generator and the critic networks, respec-
tively, y is the condition, z is the latent noise vector, X̂ is the in-
terpolation of the generated distribution and the real dataset, and
λ is the weight for the regularization term. We set λ = 10 in our
experiments.

2An NBA play by play text describes the game clock, the type of events, such as shot
made or missed, free throw, block, and turnover, and the players involved in the play.



Figure 1: The architecture of the presented network. Each block represents a single feature vector/map with text providing its
resolution. All the convolutional layers are one-dimensional in the temporal domain with a kernel size of 5. In addition, each
convolutional layer is followed by a normalization layer [3] and a leaky ReLU activation function (α = 0.2).

3.3 Wide open penalty
Wide open is a situation that an offensive player is not defended.
If the player is a ball handler, he can drive into the restricted area
or shoot the ball to make scores. Although the network trained by
minimizing Equation 1 can produce fairly good results in many
cases. we observe that in some frames the ball handler does not
attempt to make scores even though there is a wide open nearby.
Since the offensive players’ movements are real, there must be
a problem in the generated defensive plays. Therefore, we add a
penalty term to penalize the open space of G(z |y). That is,

β ·
��W (x) −W (G(z |y))

��,
whereW (•) = ((1+ θ ) × (1+ |a −b |)), x is a randomly selected real
defensive play, b is the ball position in 2D, a is the front defender’s
position closest to the ball handler, θ is the angle formed by (a − b)
and the edge from the ball to the basket, and β = |C(G(z |y)|y)| is
the weight used to balance the strength of this wide open penalty
and the score given by the critic.

3.4 Implementation details
We train the presented network by using the Adam optimizer [13]
with a learning rate= 1e-4 on a single NVIDIA GeForce 1080 ti. The
parameters in the network are initialized by using Xavier [6]. We
set the batch size to be 128 when training the network. Although
the network can process basketball plays with variable length, we
train the network with a fixed number (n = 100) of frames to enable
parallelism. But we emphasize that n can be different in testing.
To keep the critic C close to optimum during the training process,
in the first 10 epochs, we train the generator only 1 iteration per
epoch. After that, we train the critic 5 iterations per generator
iteration in general. But for every 10 epochs, we again train the
generator 1 iteration in the epoch. The training process stops at
828K iterations because the loss is unable to decrease and the system
starts overfitting. We refer readers to [2] for further details.

4 RESULTS AND DISCUSSIONS
We tested the presented network on many offensive conditions. For
each condition, we generated 100 sets of defensive plays and then
selected the set with the highest score given by the critic. Overall,
the generated players’ trajectories are visually realistic because of
natural moving behaviors such as curving and making sharp turns.
In addition, all players in the defensive team strive to prevent the
occurrence of wide open. To evaluate the performance of our CNN
and the presented wide open penalty, we trained another four mod-
els for comparison. They are supervised, CNNONLY, RNNONLY,
and RNN+WO, where +WO means with the wide open penalty’. The
supervised model is similar to the generator in our CNN model,
but the input and output are offensive and defensive players’ move-
ments, respectively. The RNN model is a bi-directional long short
term memory network, in which the number of free parameters
was similar to that of the CNN. To approach the best performance
of these networks, we stopped the training process when the results
in validation sets could not be further improved.

Figure 2 shows an offensive condition, in which the players
were executing a pick and roll strategy to earn an open space
for the ball handler. If this offensive strategy succeeds, the ball
handler can shoot with no defenders standing close to and in front
of him. Therefore, the goodness of a defensive strategy can be
identified by observing the distance between the ball handler and
the closest front defender. Figure 2 (a) and (b) show the real and the
generated (by CNN+WO) defensive plays, respectively, under the
same offensive condition. In the second and the third columns, the
offensive player A4 is moving toward the defensive player B5 to
execute a pick and roll strategy with A2 (ball handler). His goal is
to set a pick/screen (attempt to separate the defender and the ball
handler) on B5 and allow A2 more space to create an offensive play.
Therefore, in a good defensive play, there should be an additional
defensive player moving towards A2, following A4, in order to get
ready to help defend, either by switching defensive assignment or
trapping the ball handler by double teaming (Figure 2 (a)). Notice



Figure 2: From (a) to (f) are the real and the generated defensive plays conditioned on the same offensive play. We partition
the play into five segments according to time (i.e., 20 frames per segment) and show them from left to right to achieve a clear
visualization. The ball, offensive team’s players, and the defensive team’s players are in green, red, and blue, respectively. In
addition, the moving direction of each trajectory is from transparent to opaque.

that the defensive plays generated by CNN+WO (Figure 2 (b)) fit
the situation we just mentioned, as B2 quickly comes over to cover
A4, giving A2 no open space to shoot.

Figure 2 (c) shows the defensive play generated by CNNONLY.
Without the wide open penalty, an open space is created by the

offensive players when they execute the pick and roll strategy.
Basketball experts would easily notice the unreasonable behavior
of A2 because he does not shoot the ball even though the space
has been created. With regard to RNN+WO, as shown in Figure
2 (d), when offensive players A2 and A4 execute the pick and roll



Figure 3: (Left and middle) Frequencies of speed and acceleration of the defensive players’ movements. (Right) Frequencies of
occurrence of an open space under the condition of d feet. In this chart, we only analyze ball handlers.

Model Speed (f t/s) Acc (f t/s2)
Mean SD Mean SD

Real 3.85 2.85 1.28 1.02
CNN+WO 4.07 2.82 2.00 2.27
CNNONLY 3.90 2.76 1.95 2.67
RNN+WO 4.58 2.94 2.94 3.01
RNNONLY 4.68 2.96 3.16 3.35
Supervised 2.15 1.49 0.99 0.97

Table 1: Mean and standard deviation of defensive players’
speed and acceleration.

play to create an open space, the defender B5 gets no help, and
has to fight over the pick himself to defend, although wide open
penalty is considered in this network. We also found a similar sit-
uation when the wide open penalty is not considered (Figure 2
(e)). Finally, the defensive play generated by the supervised model
is the least realistic since all defensive players gather at around
the restricted area and move slowly in a game. The problem oc-
curs because an offensive play can be defended in different ways.
Under this circumstance, the supervised model tends to fit player
positions in a regression manner. Please refer to our supplemen-
tal videos (Results.mp4, CNN_VS_RNN.mp4 and comp_penalty.mp4)
for comparison because players’ movements in a basketball game
are difficult to visualize by pictorial representation. We also show
the defensive plays generated by the network trained at different
iterations in comp_iterations.mp4.

4.1 Objective evaluation
In NBA, a player’s defensive performance is evaluated based on
statistic, such as rebounds per game and blocks per game. However,
the statistic can only be obtained when games are played. Therefore,
we evaluate the generated defensive plays by comparing with real
plays in terms of 1) the degree of realism of players’ movements,
and 2) the fulfillment of defense objectives.

Degree of realism. We compare the real and the generated
movements in terms of speed and acceleration, and check if the
movements are similar. This evaluation is presented because the
generated defensive plays are used to forecast how the opposing
team will react when an offensive strategy is applied. If the players’

Model BH nBH
Mean SD Mean SD

Real 8.866 3.716 12.044 5.576
CNN+WO 9.450 3.819 15.093 6.015
CNNONLY 12.163 4.931 15.101 6.024
RNN+WO 14.504 5.742 17.074 7.106
RNNONLY 14.871 5.753 17.104 7.273
Supervised 19.699 5.979 24.308 8.341

Table 2: Mean and standard deviation of distance to defend
an offensive player. The distances to defend ball handlers
(BH) and non ball handlers (nBH) are measured.

Model Speed Acc Dis (BH) Dis (nBH)
CNN+WO 0.51 1.22 0.017 0.051
CNNONLY 0.50 0.43 0.050 0.054
RNN+WO 0.67 3.02 0.083 0.092
RNNONLY 0.74 3.13 0.082 0.093
Supervised 1.84 2.82 0.171 0.234

Table 3: We measured the similarity between the real and
the generated defensive plays by the Hausdorff distance, in
terms of players’ speed and acceleration, and the distance to
defend ball handlers and non- ball handlers.

movements are unrealistic, the generated plays would be meaning-
less. Figure 3 left and middle show the statistic of speed and acceler-
ation. The horizontal and vertical axes indicate speed/acceleration
and frequency, respectively. We also showed the means and the
standard deviations in Table 1. As indicated by the statistic, al-
though players’ movements can be fast, they run slowly in most
of the time because they have to save energy. In addition, the lines
indicate that players’ movements generated by the CNNs are more
similar than the RNNs and the supervised model to the real players’
movements. To prevent visual misleading, we verified the result by
the Hausdorff distance (Table 3) between the statistic of the real
and the generated players’ movements.

Fulfillment of defense objectives.We attempt to understand
whether the generated strategies can effectively minimize the op-
portunity of making scores by the opposing team. Since players



Figure 4: We visualize the mean distance to defend an offensive player with respect to the offensive player’s position. The
color from blue to red indicates the distance from short to long; whereas white means the position has no data. Because of
different behaviors of ball handlers and non- ball handlers on the court, we analyze the distances of these two types of players
separately. We also visualize the difference of distance for comparison.

would quickly run out of energy if they keep playing man to man
defense, expecting a zero occurrence of wide open is problematic.
Therefore, considering that the real data were collected from the
best players worldwide, we compare the frequency of the occur-
rence and the positions of wide opens between the real and the
generated plays. In other words, the occurrence of wide open is
allowed if it is far away from the basket or to non-ball handlers.

For each position on the basketball court, if there is an offensive
player, we measured the mean distance between the player and his
closest front defender. The formula used to compute the distance is
shown in Equation 2. Note that the defender who stands at the back
of an offensive player will have a large distance by this formula.
Since a ball handler can shoot the ball directly if there is an open
space nearby, whereas the remaining offensive players cannot, we
analyzed the defensive behaviors for these two types of players
separately. Table 2 shows the mean distances and the standard
deviations. We also show the heat maps in Figure 4 to convey the
mean defensive distance at each position. The heat maps reveal that,
ball handlers are always closely defended; but non- ball handlers are
not if they are far away from the restricted area. This phenomenon
is reasonable because a non- ball handler has to obtain the ball
before he shoot, and making a three point shot is more difficult
than making a two point shot. In addition, the heat maps indicate
that real defenders perform the best; and the wide open penalty
can effectively reduce the distance between the defender and the
ball handler. To prevent misleading, we visualize the deviation of

the defensive distances between the real and the generated plays
in Figure 4. We also verify the similarity by the Hausdorff distance
and show the results in Table 3.

Wide opens in the real basketball plays seldom occur because the
dataset was recorded from NBA players. Accordingly, we determine
the frequency of open space occurrences in the real and generated
defensive plays. Suppose that a ball handler can shoot if the closest
front defender is d feet away from him.We determine the frequency
of open space occurrences under different conditions d . Figure 3
right shows the result. It is not surprising that the frequency of
occurrence in the real plays is the lowest since NBA players are
world class professional. The defensive plays generated by our
CNN+WO is the second best.

Summary. We compared the similarity of the real and the gen-
erated defensive plays based on the players’ moving speed and
acceleration, the distance to defend offensive players, and the fre-
quency of wide open occurrences. An interesting finding is that,
defensive players in the real plays run the slowest but perform the
best, as indicated in the statistic shown in Tables 1 and 2, and Figure
3. In other words, the real players adopted a smarter strategy than
the generated players in defending the offensive team. Among the
networks, the performance of the CNN GAN is much better than
that of the RNN GAN and the supervised CNN. In addition, the
wide open penalty overall has positive effects to the results. The
mean distance to ball handlers becomes small and the frequency of
open space occurrences are greatly reduced. Although the non-ball



Figure 5: Although defensive players B4 and B5 seem to wonder aimlessly, the play generated by our system was typically a
zone defense strategy. Since the participants in PRO identified the strategy, they considered the generated play to be real. From
left to right are the four consecutive segments of the game play, in which the offensive players, defensive players, and the ball
are visualized in red, blue, and green, respectively. The moving direction of each trajectory is from transparent to opaque.

Group Q1_1 Q1_2 Q1_3 Q1_4 Q1_5 Q1_6 Q2_1 Q2_2 Q2_3 Q2_4 Q2_5 Q2_6
PRO 0.47 0.12 0.59 0.82 0.88 0.76 0.71 0.94 0.41 0.94 0.71 0.65
FAN 0.30 0.35 0.70 0.78 0.70 0.74 0.65 0.78 0.43 0.78 0.78 0.57
ORD 0.47 0.53 0.68 0.79 0.58 0.58 0.53 0.63 0.58 0.53 0.42 0.79

Table 4: The correct rates of questions answered by the participants in PRO, FAN, andORD, respectively. An interesting finding
was that, the participants in PRO and FAN could easily identify or be fooled by the generated defensive plays because of the
relatively high and low rates. In contrast, the correct rates of the participants in ORD did not vary considerably.

handlers are loosely defended caused by the penalty, the influence
to realism is not considerable because they do not have a ball.

The evaluation presented in this paper is mainly achieved by
comparing statistics. Another possible way to evaluate a model is
letting the models to compete in a simulated environment. There-
fore, we are thinking about training a model that can generate
offensive strategies, and let the offensive and defensive models to
play basketballs. In other words, the effectiveness of offensive and
defensive strategies can be simply evaluated by the scores. We will
work on this direction in the near future.

4.2 User study
Procedure.We conducted a user study to obtain subjective mea-
surements of the defensive plays generated by CNN+WO. Specif-
ically, we randomly selected 12 offensive conditions, which were
about 15-20 seconds, from the testing dataset, and then merged
them with real or the generated defensive plays. We applied the
plays to create a questionnaire with two sessions. In the first ses-
sion, there were 6 questions, in which the participants were shown
a game play and were asked to judge whether the play was real or
fake. Half of the defensive plays in the questions were real and the
other half were generated by CNN+WO. In the second session, there
were 6 questions, too. We compared our generated defensive plays
with real data. The participants were shown two game plays (top
and bottom in random order) that had the same offensive condition,
and were asked to select which play was real.

Results. 59 participants joined our user study. Among the par-
ticipants, 17 of them were players on the varsity/department team,
23 of them were NBA fans, and 19 of them were ordinary people

but familiar with basketball rules. The participants in the three
groups were denoted by PRO, FAN, and ORD, respectively. Ideally,
the correct rate in the conducted user study would be 0.5 if the real
and the generated plays were indistinguishable, because there were
only two choices in each question. Table 4 shows the correct rates
of the questions answered by the participants. As indicated, the par-
ticipants could more or less distinguish the real and our generated
defensive plays, since the correct rate on average (session 1: 0.60,
session 2: 0.66) was higher than the rate of random guess (i.e., 0.5).

In the first session, the participants in PRO (M=0.61, SD=0.28)
did not outperform the participants in FAN (M=0.59, SD=0.21) and
ORD (M=0.61, SD=0.11). Particularly, most of the participants in
PRO was fooled by the second question, in which the defensive play
generated by our network was a 2-3 zone defense. We visualize
the game play in Figure 5. That was a defensive formation, where
defenders were designated to defend certain areas of the court that
makes it harder to pass the ball into the restricted area. Compared
to a one-to-one defense, where the defenders follow an assigned of-
fensive player around the court, players can save energy by playing
a zone defense. Since the participants in PRO could identify such
formations, they considered that the generated defensive play was
real. However, the participants in FAN and ORD could not identify
the formation. They simply thought that the defensive play was
fake because two players seem to wonder aimlessly in the restricted
area. In addition to the correct rate, we found that 73% and 47% of
the real and the generated plays were identified as real, respectively.

In the second session, the participants in PRO (M=0.73, SD=0.20)
could answer a lot more questions correctly than the participants
in FAN (M=0.67, SD=0.14) and ORD (M=0.58, SD=0.12). We also



Figure 6: (a) The distributions of weights in the linear pro-
jection layer for reshaping the latent noise vector z. The
horizontal and vertical coordinates indicate the number of
iterations and weight values, respectively. Let µ and σ be
the mean and the standard deviation of the weights, respec-
tively. The distributions µ ± 0.5σ , µ ± σ , µ ± 1.5σ are visu-
alized from the most saturated to the least saturated or-
ange, respectively. (b) The trajectories of a defensive player
generated by 20 different latent vectors z. As indicated,
the weights become smaller as the number of iteration in-
creases, and the diversity of player trajectories falls away.

observed that the correct rates of the three groups were very dif-
ferent, and the rates could reflect their familiarity with basketball.
In other words, when both the real and the generated plays were
compared side by side, the participants could make better decisions
if they knew more about basketball.

Summary.We have subjectively evaluated our system by con-
ducting a user study. The mean correct rate of the questions in-
dicated that the defensive plays generated by our system were
realistic. Particularly, our system could fool participants in ORD
because of the low correct rate and the low standard deviation of
the rate. Although several plays generated by our system could
be easily identified as fake by the participants in FAN and PRO,
sometimes these participants made mistakes because the generated
plays contain strategies. The generated defensive players were not
just chasing the offensive players, but defending the players with a
strategy.

4.3 Diversity of the generated trajectories
We evaluated the diversity of the results generated by our net-
work. Specifically, given the same condition y but different latent
noise vectors z, we would like to know whether the trajectories
G(z |y) were different. Figure 6 (b) shows the trajectories of a player
generated by various latent vectors z. As indicated, although the
trajectories were different, they were visually similar. To figure out
whether the latent vectors z had sufficient influence to the results,
we visualized the weights that were used to linearly project vector
z to a feature map. Figure 6 (a) shows that the weights gradually de-
generated to zero when the number of training iteration increased.
In other words, the network considered that noise vectors were not
helpful in generating realistic defensive plays. Similar phenome-
non also appears in another applications such as image to image
translation [12] and video prediction [15].

4.4 Attributes of the dataset
The SportVU datasets contain player positions in each frame. Al-
though the offensive and defensive players can be distinguished,
positions of the players are unknown. The generator has no knowl-
edge about point guard, forward, and center when it generates
defensive plays. Experimentally, we did not find a generated player
whom plays two roles in a game. If a player plays as a point guard,
he would not play as a center. We reason that the training dataset
contains no (or very few) such examples. However, we believe that
addition information, such as profiles of the players, would be ben-
eficial to training the network. In our current system, we assume
that all players have an identical weight and height, and can run
equally fast on the court. If the assumption is not the case, the
generated defensive plays can be less reliable.

4.5 Limitations
Although the defensive plays generated by the presented network
look realistic in most of the situations, abnormal player movements
may occur occasionally. For example, defensive players may switch
positions back and forth or stay very close to each other. Even
participants who were not familiar with basketball games can no-
tice the unnatural behaviors. We show the failure examples in our
supplemental results (failure example.mp4). Therefore, one of our
future goals is to improve the result quality by preventing the occur-
rence of such abnormal movements. Another limitation is the way
to input the offensive condition. Users would prefer specifying the
offensive condition by sketching rather than drawing precise mov-
ing trajectories on a tactical board. We plan to provide an intuitive
graphical interface for users in the near future.

5 CONCLUSIONS AND FUTUREWORKS
We have presented a generative adversarial network to simulate
defensive plays corresponding to the ball and the movements of
players on the offensive team. The generated results are visually
realistic, which have been verified by the conducted user study.
Although players and coaches can simulate how the opposing team
will react to an offensive strategy by using our system, there is still
space for improvement. For example, the system does not consider
profiles, skillsets, and performances of the players, when it simu-
lates defensive plays. While the way to defend a tall and a short
players could be different, considering additional information is
needed. In addition, the simulation can only mimic players’ move-
ments from the historical data. Considering that the reinforcement
learning allows players in the two teams to play games, we plan to
apply the technique to simulate basketball games according to play-
ers’ abilities. We also attempt to explore the possibility in inventing
new basketball strategies by this new technique.
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