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Abstract As 3-point shooting in the NBA continues to increase, the importance of perimeter de-

fense has never been greater. Perimeter defenders are often evaluated by their ability to tightly

contest shots, but how exactly does contesting a jump shot cause a decrease in expected shoot-

ing percentage, and can we use this insight to better assess perimeter defender ability? In this

paper we analyze over 50,000 shot trajectories from the NBA to explain why, in terms of impact

on shot trajectories, shooters tend to miss more when tightly contested. We present a variety of

results derived from this shot trajectory data. Additionally, pairing trajectory data with features

such as defender height, distance, and contest angle, we are able to evaluate not just perimeter de-

fenders, but also shooters’ resilience to defensive pressure. Utilizing shot trajectories and corre-

sponding modeled shot-make probabilities, we are able to create perimeter defensive metrics that

are more accurate and less variable than traditional metrics like opponent field goal percentage.
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1 Introduction

Perimeter defense in the NBA involves defenders attempting to stop, contest, or block outside

jump shots by the opposing team. With three-point attempt rates continuing to rise, players’

perimeter defensive ability is an important factor in determining a team’s defensive success.

However, it is difficult to quantify the ability of perimeter defenders. Additionally, while it is

well-known that tightly contesting outside shots results in poorer shooting (Chang et al. 2014),

little has been done to study why contesting shots decreases field-goal percentage (FG%) and

how contests affect the trajectory of shots.

Defensive metrics are in general more difficult to measure and, traditionally, provide us less in-

formation than their offensive counterparts (Franks et al. 2015). Common box score metrics such

as blocks and steals rely on discrete and easily countable events that do not provide us with a full

picture of a player’s defensive ability. Metrics like opponent FG% and perimeter defense rating

that try to quantify perimeter defense still rely on counting discrete events and can be highly vari-

able. For example, players’ opponent 3P% (three-point percentage where the given player is the

closest defender) has almost zero correlation year-to-year (Narsu 2017). Even commonly used

advanced metrics like defensive rating and adjusted plus/minus do not give us information about

why certain defenders are effective or not. With the introduction of player tracking data, a suite

of new defensive metrics have been developed to try and fill the gap between offensive and defen-

sive metrics (Franks et al. 2015, Goldsberry and Weiss 2013). While many of these new metrics

do incorporate spatial player information, they still do not utilize the shot trajectory information

given by the optical tracking data. Metrics that are based solely on binary make/miss shot infor-

mation can be unstable, as a player’s FG% over a single season is inherently low sample size and

may be highly variable (Daly-Grafstein and Bornn 2019). Additionally, these metrics still do not

address the question of how contesting shots causes them to miss more frequently.
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In this paper we introduce a variety of results derived from shot trajectories in an attempt to quan-

tify how contesting shots affects shooting percentage. We begin by using spatio-temporal infor-

mation provided by optical tracking data to estimate shot trajectories and shot-make probabilities.

We quantify each trajectory using three shot factor measures: depth, left-right distance, and en-

try angle (Daly-Grafstein and Bornn 2019, Marty 2018, Marty and Lucey 2017), and use these

shot factors to model shot-make probabilities. Next, we pair defender and trajectory informa-

tion to present a collection of results, including trajectory variation in relation to open vs. con-

tested shots, and how defender height and distance affect shot angles and shot depths. In Section

3, we show using regression models that metrics derived from shot trajectory information stabi-

lize inference, allowing us to estimate defender skill and shooter resiliency to defensive pressure

in fewer games than previously possible.

2 Methods

2.1 Dataset

The data used for our analysis is the SportVu spatio-temporal tracking data provided by STATS

LLC. This optical tracking data provides the x and y coordinates of the 10 players on the court

and the x, y, and z coordinates of the ball, 25 times per second. The data are also tagged with

play-by-play event codes that indicate when events such as shots, dribbles, passes, etc. take place.

We restrict our analysis to 50,916 three-point shots from the 2014-15 season. Following Daly-

Grafstein and Bornn (2019), we now present a model for estimating shot-make probabilities.
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Figure 1: A graphical depiction of the shot trajectories from the SportVu database. The points
represent data from the optical tracking database, while the smooth lines represent our modeled
best-fit lines estimated using the Bayesian regression model (1).

2.2 Estimating Shot Trajectories

To accurately estimate the ball’s position near the basket, we fit a quadratic best fit line through

the trajectory of each shot i of the form:

E(Zi) = β0 +β1xi +β2yi +β3x2
i +β4y2

i +β5xiyi (1)

We estimate the coefficients in (1) using a Bayesian regression with a conjugate Normal prior for

β of the form ρ(β |σ2,z,X) ∼ N(u0, σ2Λ
−1
0 ), and a conjugate inverse gamma prior ρ(σ2|z,X) ∼

IG(a0,b0). The parameters of these priors are modeled using non-informative conjugate hyper-

priors updated with pseudo-data reflecting our prior knowledge of shot trajectories. We specify

4 pseudo-data points: 2 set at the x, y location of the shooter and 7 feet in height, and 2 set at the

centre of the basket and 10 feet in height. After updates using the pseudo-data and optical track-

ing data, we take the posterior mean of β as our estimate for the coefficients in (1) (Figure 1).
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We then use (1) to calculate three shot factors for each trajectory - the shot depth, left-right dis-

tance, and entry angle - following the procedure of Marty and Lucey (2017). Shot depth is de-

fined as the depth of the ball relative to the front rim as it enters the basket. Left-right distance

is defined as the deviation of the ball from the center of the hoop. Entry angle is defined as the

angle between the ball and the rim as it enters the basket. See Marty and Lucey (2017) and Daly-

Grafstein and Bornn (2019) for further details.

2.3 Modeling Shot-Make Probabilities

The shot trajectories and derived shot factors described above give us more information on each

shot than simply whether it is a make or a miss. If we summarize this trajectory information in

a shot-make probability model, we can effectively Rao-Blackwellize shooting metrics and their

derivatives by conditioning each shot’s binary outcome on its make probability (Daly-Grafstein

and Bornn, 2019). To accomplish this, we use the estimated shot factors described above as co-

variates in a logistic regression:

P(Si = 1) = σ

(
β0 +β1D̂i +β2L̂Ri +β3Âi +β4D̂2

i +β5L̂R2
i

+β6Â2
i +β7D̂i ∗ L̂Ri +β8D̂i ∗ Âi +β9L̂Ri ∗ Âi

)
(2)

with P(Si = 1) representing the probability shot i is a make, σ(x) = exp(x)/(1+ exp(x)), and

D̂i , L̂Ri, and Âi representing the estimated depth, left-right distance, and entry angle of shot i, re-

spectively. We train this model using 46,093 of the 50,916 threes from the 2014-15 NBA season,

removing shot trajectories that were partially missing, especially noisy, or that resulted in mod-

eled shot trajectories from (1) that were too far from the raw data. We show the distribution of

modeled probabilities in relation to our three shot factors and the basket in Figure 2.
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(a) (b)

Figure 2: Figure (a) shows the mean predicted shot-make probabilities over the range of entry
angles given by (2). Figure (b) shows the distribution of predicted shot-make probabilities over
different values of shot depth and left-right accuracy in relation to the basket. Note the shot-make
probability legend applies to both figures

3 Results

3.1 The Effect of Defenders on Shot Trajectories

Here we present results based on shot trajectories that help give some insight into how exactly

defending shots lowers shooting percentages. Firstly, when comparing open and contested 3-

point shots, we find shots that are tightly contested have a 56% larger variance in depth and a

38% larger variance in left-right distance compared to open shots (Figure 3). Contesting shots

does not appear to introduce bias into the left-right accuracy of shooters, but does appear to cause

shooters to bias their shots shorter than what is optimal. We also find that a smaller nearest de-

fender distance (NDD) results in both higher entry angles and depths shorter in the hoop (Figure

4a, 4b). Additionally, conditional on defender distance, taller defenders result in higher shot tra-

jectory angles when contesting 3-point shots (Figure 4a). The same trend is not as pronounced

between defender heights and shot depths. Both our shot factors and those measured in Marty
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Figure 3: The distribution of open and contested 3-point attempts from the 2014-15 NBA season.
Open and contested shots are defined as attempts with a NDD greater than 6 feet and less than 4
feet, respectively. Here NDD is taken as the distance of the closest defender to the shooter when
the shot is released. Depth and left-right measurements are given in feet.

(2018) and Marty and Lucey (2017) using the Noah shooting system find that entry angles in

the mid-40’s result in the highest shooting percentage. Thus it appears that taller defenders are

causing opponent shot trajectories to deviate from optimal angles. However, shooting percent-

ages are more consistent over a range of entry angles compared to either left-right distance or

shot depth, indicating the effect that taller defenders have on shot angles relative to overall shoot-

ing percentages may be minor. The more important effect may be how NDD affects shot depths.

As in Marty and Lucey (2017), we find shot depths between 10" and 11" maximize 3P%. In our

dataset, shots landing at 9" depth are made at 60.1% of the time, while shots landing at 10" depth

are made 64.5% of the time. Thus, some of the drop in expected shooting percentage caused by

contesting shots may be attributed to shooters biasing their shots shorter when confronted with

tight defense. When looking at if defenders affected the left-right accuracy of shots, we do not

find any effect of defender angle on shot trajectories. Specifically, defenders contesting from the

left or the right of the shooter do not appear to bias shots in either direction.
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(a) (b)

Figure 4: The entry angle (a) and shot depth (b) of all 3-point shot attempts during the 2014-15
season. Shot attempts are categorized by the nearest defender’s distance (NDD) and the nearest
defender’s height. In Figure (b) the dotted horizontal line indicates the shot depth at which 3P%
is maximized.

3.2 Evaluating Perimeter Defenders and Shooters

As mentioned in Section 1, a player’s opponent 3P% is not a reliable perimeter defensive met-

ric because it is quite variable, having almost no year-to-year correlation. Here we try to im-

prove this metric by utilizing the modeled shot-make probabilities calculated in Section 2.2. To

this end, we create 2 regression models to evaluate each player’s defensive ability when they

are tagged as the nearest defender. The first estimates the defensive impact of each player using

make/miss indicators as the response (model 1), essentially giving the magnitude of difference

between 3P% when the defender of interest is defending compared to a weighted average of the

offensive players’ 3P% over the season. The second model does similar, except uses shot-make

probabilities as the response (model 2). These models have the form:

Yi jk = β0 +α j + γk (3)
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where Yi jk is the ith shot taken by the jth player and defended by the kth player. Yi jk is either a

binary indicator in the case of model 1, or the modeled shot-make probability of shot i in the case

of model 2. Using sum-to-zero contrasts, the α j’s are the differences between each player’s 3P%

and the league average in the first model, and estimated differences between each player’s mean

shot-make probability and the league average shot-make probability in the second. Similarly, the

γk’s are estimates of each defender’s impact on opponent 3P% in the first model, and estimates of

each defender’s impact on opponent three-point shot-make probability in the second model.

If we consider the γk values estimated using binary shot outcomes over the entire 2014-15 season

as each player’s true perimeter defensive impact, we can show that using shot-make probabilities

allows us to estimate coefficients with less data than when using make/miss responses (Figure

5a). The MSEs of coefficients estimated using fewer than 50% of the games from the 2014-15

season are smaller when using shot-make probabilities, and these gains are especially evident at

low sample sizes. Additionally, we find that when comparing ranks of defenders from the first

and second half of the 2014-15 season, coefficients estimated using shot-make probabilities out-

perform those estimated with make/miss outcomes in terms of consistency of player ranks (ρ =

0.17 vs. 0.025, respectively). Thus, we can use our new metric to more accurately rank perimeter

defenders compared to opponent 3P% (Table 1).

We can perform a similar analysis to measure how effective shooters are at responding to defen-

sive pressure. We again create 2 regression models, this time to evaluate how players’ shooting

percentage changes based on nearest defender distance. The first model estimates the change in a

player’s 3P% for every foot change in the NDD, while the second estimates the change in mean

shot-make probability for every foot change in NDD. These models have the form:

Yi j = β0 +α j + γ j ∗NDDi j (4)
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(a) (b)

Figure 5: Figure (a) depicts the mean squared error (MSE) of the γk’s from (3) estimated using
10%, 20%, 30%, 40%, and 50% of the games in the 2014-15 season. Coefficients using model
1 (Raw) and model 2 (Prob) are compared to coefficients estimated using the entire 2014-15
season data and make/miss responses. These coefficients correspond to the defensive impact of
each player. Figure (b) depicts the same MSE as (a) except the coefficients correspond to each
shooter’s interaction with NDD, denoted as γ j in (4).

where Yi j is the ith shot taken by the jth player, and the α j’s are defined similarly to (3). The γ j’s

now denote the estimated interaction effect between each shooter and the NDD. Thus the γ j co-

Table 1: Nearest Defender Impact on Shots

Rank Defender γk ∗100 Opp Prob Rank Defender γk ∗100 Opp Prob

1 Boris Diaw -6.71 30.0% 137 Derrick Williams 8.57 45.8%

2 Draymond Green -5.92 32.0% 136 Channing Frye 7.15 43.0%

3 Langston Galloway -5.25 30.6% 135 Vince Carter 5.96 41.7%

4 Patrick Beverley -4.55 31.9% 134 Kirk Hinrich 5.93 42.2%

5 Wesley Johnson -4.39 31.7% 133 Jameer Nelson 5.69 42.8%

The top and bottom perimeter defenders estimated via (3) using shot-make probabilities from (2).
The γk ∗100 values represent the estimated difference in 3-point shot-make probability
percentage per 100 shots when the given player is the primary defender compared to a weighted
average of probabilities based on their opponent’s shooting skill. The Opp Prob column denotes
the mean estimated shot-make probability of shots where player k is the closest defender.
Restricted to players who defended at least 100 three-point shots during 2014-15.
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efficients represent the estimated change in mean 3P% (shot-make probability) for every one foot

change in the NDD for each shooter. Again we find that we can estimate coefficients using less

data (Figure 5b) and that shooter rankings are more consistent when using shot-make probabili-

ties (ρ = 0.20 vs. 0.033, respectively). Shooter rankings based on changes in shot-make probabil-

ity are presented in Table 2. For example, Kemba Walker’s estimated mean three-point shot-make

probability decreases 1.98% points less than the league average for every foot closer the nearest

defender is.

4 Discussion and Conclusion

Substituting shot-make probabilities for binary make/miss outcomes is an example of Rao-Blackwellizing

FG%. If we model shots as Beta-Bernoulli random variables, shot-make probabilities become a

sufficient statistic for shooting ability, and thus conditioning on these probabilities will, by the

Rao-Blackwell theorem, result in an estimator with lower variance (Daly-Grafstein and Bornn

Table 2: Perimeter Shooter Resiliency to Shot Contests

Rank Shooter γ j ∗100 Rank Shooter γ j ∗100

1 Michel Carter-Williams 3.45 137 Aaron Brooks -2.54

2 Rasual Butler 3.39 136 Langston Galloway -2.41

3 Austin Rivers 2.86 135 Russell Westbrook -2.37

4 Kemba Walker 1.98 134 Nik Stauskas -2.35

5 Gerald Henderson 1.58 133 Rovert Covington -2.02

The top and bottom shooters resilient to defensive pressure estimated via (4) using shot-make
probabilities. Values represent the estimated change in each player’s 3-point shot-make
probability per 100 shots for every 1 foot decrease in NDD relative to the league average.
Restricted to players who attempted at least 100 three-point shots during 2014-15.
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2019). The results presented in this paper are just a few examples of the improvements Rao-

Blackwellization can give. With tracking data now available in hockey, football, and soccer, tra-

jectory data can be leveraged to calculate similar goal/pass-make probabilities that may result in

improvements similar to those seen in this paper.

The results presented in Section 3 illustrate the improvements gained by using shot trajectories

estimated from the tracking data to evaluate defender skill. We believe this work has opened up

many areas of future research. For example, nearest defender distance is not the most reliable

way to quantify the defensive pressure on a shot. It does not give us any indication of how the de-

fender is oriented in relation to the shooter, and also may tag a player that is not the primary de-

fender. We may be able to improve our defensive impact metric by using a more reliable measure

of who the primary defender is (e.g. Franks et al. 2015), or by trying to incorporate the intensity

of the defensive contest (e.g. Csapo and Raab 2014). Furthermore, we defined a relatively sim-

ple model in (3) that estimates a mean for each player’s defensive impact. Conditioning on other

covariates, such as shot location, shooter position, or even NDD, may give a more accurate esti-

mation of players’ perimeter defensive ability. Finally, opponent FG%, and its counterpart based

on shot-make probabilities defined in this paper, may themselves be flawed metrics in evaluat-

ing perimeter defense. These metrics do not take into account defenders who stopped opponents

from attempting a shot, forced their opponent to pass or create a turnover, or even prevented the

opponent shooter from receiving the ball altogether. Combining the metrics defined in this pa-

per with those that account for how defenders affect shot volumes and efficiency over the course

of an entire defensive possession (e.g. Franks et al. 2015) may give a fuller picture of a player’s

perimeter defensive ability.

In this paper we sought to provide new descriptions for how defenders affect shots as well as con-

struct metrics that are better able to estimate perimeter defender and shooter behavior. Following

Marty and Lucey (2017), we presented a variety of results derived from shot trajectories. Similar
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to Marty and Lucey (2017), we found that three-point probabilities are highest at a depth of 10",

and shots have a fairly consistent make probability over a range of entry angles. Additionally,

we found that NDD increases variability in shot depth, while also biasing shots short. However,

neither NDD nor defender angle seemed to bias the left-right location of shot trajectories, with

NDD only increasing its variability. Thus it appears players are shooting with sub-optimal shot

depths when facing defensive pressure. This may give players that train to correct this bias an

opportunity to improve their three-point shooting. Furthermore, our new metrics based on make-

probabilities decreased the variation in estimation relative to their raw counterparts. These met-

rics may allow coaches to more accurately assess a player’s perimeter defense, as well as indicate

which outside shooters are most affected by tight defensive pressure. Teams could use this infor-

mation to make better decisions about which players to guard on the three-point line, or to better

evaluate their players’ shot selection based on defensive pressure.
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