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Abstract

Every shot in basketball has an opportunity cost; one player’s shot eliminates
all potential opportunities from their teammates for that play. For this reason,
player shot efficiency should ultimately be considered relative to the lineup. This
aspect of efficiency—the optimal way to allocate shots within a lineup—is the focus
of our paper. Allocative efficiency is fundamentally a spatial problem because the
distribution of shot attempts within a lineup is highly dependent on court location.
We propose a new metric for spatial allocative efficiency by comparing a player’s
field goal percentage (FG%) to his field goal attempt (FGA) rate in context of
both his four teammates on the court and the spatial distribution of his shots.
Leveraging publicly available data provided by the National Basketball Association
(NBA), we estimate player FG% at every location in the offensive half court using
a Bayesian hierarchical model. Then, by ordering a lineup’s estimated FG%’s and
pairing these rankings with the lineup’s empirical FGA rate rankings, we detect
areas where the lineup exhibits inefficient shot allocation. We estimate and visualize
this inefficiency, and identify which players are responsible. Lastly, we analyze the
impact that sub-optimal shot allocation has on a team’s overall offensive potential,
demonstrating that inefficient shot allocation correlates with reduced scoring.

Keywords: Bayesian hierarchical model, spatial data, INLA, ranking, basketball

1Nathan Sandholtz is PhD candidate, Department of Statistical and Actuarial Science, Simon Fraser
University (e-mail: nsandhol@sfu.ca); Jacob Mortensen is PhD candidate, Department of Statistical
and Actuarial Science, Simon Fraser University (e-mail: jmortens@sfu.ca); Luke Bornn is Assistant
Professor, Department of Statistical and Actuarial Science, Simon Fraser University

† The first and second authors contributed equally to this work.

1

ar
X

iv
:1

91
2.

05
12

9v
1 

 [
st

at
.A

P]
  1

1 
D

ec
 2

01
9



1 Introduction

From 2017 to 2019, the Oklahoma City Thunder faced four elimination games across three

playoff series. In each of these games, Russell Westbrook attempted over 30 shots and

had an average usage rate of 45.5%.1 The game in which Westbrook took the most shots

came in the first round of the 2017-18 National Basketball Association (NBA) playoffs,

where he scored 46 points on 43 shot attempts in a 96-91 loss to the Utah Jazz. At

the time, many popular media figures conjectured that having one player dominate field

goal attempts in this way would limit the Thunder’s success. While scoring 46 points

in a playoff basketball game is an impressive feat for any one player, its impact on the

overall game score is moderated by the fact that it required 43 attempts. Perhaps not

coincidentally, the Thunder lost three out of four of these close-out games and never

managed to make it out of the first round of the playoffs.

At its core, this critique is about shot efficiency. The term ‘shot efficiency’ is used

in various contexts within the basketball analytics community, but in most cases it has

some reference to the average number of points a team or player scores per shot attempt.

Modern discussion around shot efficiency in the NBA typically focuses on either individual

player efficiency or shot selection. The concept of shot selection efficiency is simple: 3-

pointers and shots near the rim have the highest expected points per shot, so teams should

prioritize these high-value shots. The idea underlying individual player efficiency is also

straightforward; scoring more points on the same number of shot attempts increases a

teams overall offensive potential.

However, when discussing a player’s individual efficiency it is critical to do so in con-

text of the lineup. Basketball is not a 1-v-1 game, but a 5-v-5 game. Therefore, when a

player takes a shot, the opportunity cost is the potential shots of their four teammates. So

regardless of a player’s shooting statistics relative to the league at large, a certain dimen-

sion of shot efficiency can only be defined relative to the abilities of one’s teammates. Ap-

plying this to the Oklahoma City Thunder example above, if Westbrook was surrounded

by dismal shooters his 43 shot attempts might not only be defensible but desirable. On

the other hand, if his inordinate number of attempts prevented highly efficient shot op-

portunities from his teammates, then he caused shots to be inefficiently distributed and

ultimately decreased his team’s winning potential. This aspect of efficiency—the optimal

way to allocate shots within a lineup—is the primary focus of our paper.

Allocative efficiency is fundamentally a spatial problem. As illustrated in Figure 1,

the distribution of shots within a lineup is highly dependent on court location. The

left plot in Figure 1 shows the overall relationship between shooting frequency (x-axis)

and shooting skill (y-axis), while the four plots on the right show the same relationship

conditioned on various court regions. Each dot represents a player and the size of the

dot is proportional to the number of shots the player took over the 2016-17 NBA regular

1Usage percentage is an estimate of the percentage of team plays used by a player while he was on the
floor. For a detailed formula see www.basketball-reference.com/about/glossary.html
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season. To emphasize how shot allocation within lineups is spatially dependent, we have

highlighted the Cleveland Cavaliers starting lineup (consisting of Lebron James, Kevin

Love, Kyrie Irving, JR Smith, and Tristan Thompson).

When viewing field goal attempts without respect to court location (left plot), Kyrie

Irving appears to shoot more frequently than both Tristan Thompson and Lebron James,

despite scoring fewer points per shot than either of them. However, after conditioning

on court region (right plots), we see that Irving only has the highest FGA rate in the

mid-range region, which is the region for which he has the highest PPS for this lineup.

James takes the most shots in the restricted area and paint regions—regions in which

he is the most efficient scorer. Furthermore, we see that Thompson’s high overall PPS

is driven primarily by his scoring efficiency from the restricted area and that he has few

shot attempts outside this area. Clearly, understanding how to efficiently distribute shots

within a lineup must be contextualized by spatial information.
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Figure 1: Left: overall relationship between field goal attempt rate (x-axis) and points per shot
(y-axis). Right: same relationship conditioned on various court regions. Each dot represents
a player and the size of the dot is proportional to the number of shots the player took in the
2016-17 NBA regular season. The Cleveland Cavaliers 2016-17 starting lineup is highlighted in
each plot. The weighted least squares fit of each scatterplot is overlaid in each plot by a dotted
line.

Notice that in the left panel of Figure 1, the relationship between field goal attempt

(FGA) rate and points per shot (PPS) appears to be slightly negative, if there exists a

relationship at all. Once the relationship between FGA rate and PPS is spatially disag-

gregated (see right hand plots of Figure 1), the previously negative relationship between

these variables becomes positive in every region. This instance of Simpson’s paradox has

non-trivial implications in context of allocative efficiency which we will discuss in the

following section.
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The goal of our project is to create a framework to assess the strength of the rela-

tionship between shooting frequency and shooting skill spatially within lineups and to

quantify the consequential impact on offensive production. Using novel metrics we de-

velop, we quantify how many points are being lost through inefficient spatial lineup shot

allocation, visualize where they are being lost, and identify which players are responsible.

1.1 Related Work

In recent years, a number of metrics have been developed to which aim to measure shot

efficiency, such as true shooting percentage [1], qSQ, and qSI [2]. Additionally, metrics

have been developed to quantify individual player efficiency, such as Hollinger’s player

efficiency rating [3]. While these metrics intrinsically account for team context, there have

been relatively few studies which have looked at shooting decisions explicitly in context

of lineup, and none spatially. In 2011, Goldman and Rao coined the term ‘allocative

efficiency’ in [4], modeling the decision to shoot as a dynamic mixed-strategy equilibrium

weighing both the continuation value of a possession and the value of a teammate’s

potential shot. They propose that a team achieves optimal allocative efficiency when

at any given time, the lineup cannot reallocate the ball to increase productivity on the

margin. Essentially, they argue that lineups optimize over all dimensions of an offensive

strategy to achieve equal marginal efficiency for every shot. The left plot of Figure

1 is harmonious with this theory—there appears to be no relationship between player

shooting frequency and player shooting skill when viewed on the aggregate. However,

one of the most important dimensions the players optimize over is court location. Once

we disaggregate the data by court location, (as shown in the right plots of Figure 1),

we see a clear relationship between shooting frequency and shooting skill. A unique

contribution of our work is a framework to assess this spatial component of allocative

efficiency.

Cervone et. al.’s shot satisfaction [5] is another rare example of a shot efficiency metric

that considers lineups. Shot satisfaction is defined as the expected value of a possession

conditional on a shot attempt (accounting for various contextual features, such as the shot

location, shooter, and defensive pressure at the time of the shot) minus the uncondtional

expected value of the play. However, since shot satisfaction is marginalized over the

allocative and spatial components, these factors cannot be analyzed using this metric

alone. Additionally, shot satisfaction is dependent on proprietary data which limits its

availability to a broad audience.

1.2 Data and Code

The data used for this project is publicly available from the NBA stats API (stats.nba.com).

Shooter information and shot (x, y) locations are available through the shotchartdetail’

API endpoint, while lineup information can be constructed from the playbyplayv2’ end-
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point. Code for constructing lineup information from play-by-play data is available

at: https://github.com/jwmortensen/pbp2lineup. Ultimately this yielded a set of

224,567 shots taken by 433 players during the 2016-17 NBA regular season, which is the

data that we used in this analysis. Code used to perform an empirical version of the anal-

ysis presented in this paper is also available online: https://github.com/nsandholtz/

lpl.

2 Models

The foundation of our proposed allocative efficiency metrics rest on spatial estimates of

both player FG% and field goal attempt (FGA) rates. In this section, we define and

explain our models for each of these processes.

2.1 Estimating FG% Surfaces

Player FG% is a highly irregular latent quantity over the court space. In general, players

make more shots the closer they are to the hoop, but some players are more skilled

from a certain side of the court and others specialize from very specific areas, such as

the corner 3-pointer. In order to capture these kinds of non-linear relationships, we

implement the FG% model in [5], summarizing the spatial variation in player shooting

skill by a Gaussian process represented by a low-dimensional (D = 16) set of deterministic

basis functions. We then estimate player-specific weights for the basis functions using a

Bayesian hierarchical model [6]. In this way, we maintain a feasible dimensionality for

computation while allowing our model to capture nuanced spatial features that player

FG% surfaces tend to exhibit.

We model the logit of πj(s), the probability that player j makes a shot at location s,

as a linear model:

log
( πj(s)

1− πj(s)

)
= βββ′x + Zj(s) + ε. (1)

Here βββ is a 4× 1 vector of covariate effects and x is a 4× 1 vector of observed covariates

for the shot containing an intercept, player position, shot distance, and the interaction

of player position and shot distance. Zj(s) is a Gaussian process which accounts for the

impact of location on player j’s shot make probability and ε is a mean-zero Gaussian

error term. We model Zj(s) using a functional basis representation,

Zj(s) = w′jΛΛΛΨΨΨ(s), (2)

where wj = (wj1, . . . ,wjD)′ denotes the latent basis function weights for player j and

ΛΛΛΨΨΨ(s) denotes the basis functions. Specifically, ΛΛΛ = (λλλ′1, . . . ,λλλ
′
D)′ is a D × K matrix,

where each row vector λλλd represents the projection of the dth basis function onto a triangu-
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lar mesh with K vertices over the offensive half court (more details on the construction of

ΛΛΛ follow below). We use the mesh proposed by [5], which was selected specifically for mod-

eling offensive spatial behaviour in basketball. ΨΨΨ(s) = (ψ1(s), . . . , ψK(s))′ is itself a vector

of basis functions where each ψk(s) is 1 at mesh vertex k, 0 at all other vertices, and values

at the interior points of each triangle are determined by linear interpolation between ver-

tices (see [7] for details). Finally, we assume wj ∼ N (ωωωj,ΣΣΣj), which makes (2) a Gaussian

process with mean ωωω′jΛΛΛΨΨΨ(s) and covariance function Cov(s1, s2) = ΨΨΨ(s1)
′ΛΛΛ′ΣΣΣjΛΛΛΨΨΨ(s2).

The bases of shot taking behavior, ΛΛΛ, are computed through a combination of smooth-

ing and non-negative matrix factorization (NMF) [8]. Using integrated nested Laplace

approximation (INLA) as the engine for our inference, we first fit a log Gaussian Cox

Process (LGCP) [9] independently to each player’s point process defined by the (x, y)

locations of their made shots using the aforementioned mesh.2 Each player’s estimated

intensity function is evaluated at each vertex, producing a K-dimensional vector for each

of the L = 433 players in our data. These vectors are gathered (by rows) into the L×K
matrix P, which we then factorize via NMF:

P ≈
(

B
L×D

)(
ΛΛΛ

D×K

)
. (3)

This yields ΛΛΛ, the deterministic bases we use in (2). Collectively, these bases comprise a

comprehensive set of shooting tendencies, as shown in Figure 2. Additionally, the NMF

in (3) provides player-specific loadings onto these bases, B, which we use in constructing

a conditionally autoregressive (CAR) prior on the basis weights, wj [10].

basis1 basis2 basis3 basis4 basis5 basis6 basis7 basis8

basis9 basis10 basis11 basis12 basis13 basis14 basis15 basis16

Figure 2: Deterministic bases resulting from the the non-negative matrix factorization of P.

The purpose of using a CAR prior on the basis weights is to shrink the FG% estimates

of players with similar shooting characteristics toward each other. This is integral for

obtaining realistic FG% estimates in areas where a player took a low volume of shots.

With only a handful of shots from an area, a player’s empirical FG% can often be extreme

2Players who took less than 5 shots in the regular season are treated as “replacement players.”
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(e.g. near 0% or 100%). The CAR prior helps to regularize these extremes by borrowing

strength from the player’s neighbors in the estimation.

In order to get some notion of shooting similarity between players, we calculate the

Euclidean distance between the player loadings contained in B and, for a given player,

define the 5 players with the closest player loadings as his neighbors. We enforce symmetry

in the nearest-neighbors relationship by assuming that if player j is a neighbor of player

`, then player ` is also a neighbor of player j, which results in some players having more

than 5 neighbors. These relationships are encoded in a player adjacency matrix H where

entry (j, `) is 1 if player ` is a neighbor of player j and 0 otherwise. We can specify the

CAR prior on wj as

(wj|w−(j), τ 2) ∼ N

(
1

nj

∑
`:Hj`=1

w`,
τ 2

nj
ID

)
(4)

τ 2 ∼ InvGam(1, 1).

where nj is the total number of neighbors for player j.

Lastly, we set a N (0, 0.001× I) prior on βββ, and fit the model using INLA. This yields

a model that varies spatially and allows us to predict player-specific FG% at any location

in the offensive half court. In order to get high resolution FG% estimates, we partition

the court into 1ft by 1ft grid cells (yielding a total of M = 2350 cells) and denote player

j’s FG% at the centroid of grid cell i as ξij. The estimated projection (ξ̂ξξj) for Lebron

James is depicted in Figure 3.

30
40
50
60
70
80

FG%    

LeBron James Estimated FG%

4
5
6
7

Std. Dev.

LeBron James FG% Standard Deviation

Figure 3: Lebron James 2016-17 FG% posterior mean (left) and posterior standard deviation
(right) projected onto the offensive half court. The prediction surfaces shown here and throughout
the figures in this paper utilize projections onto a spatial grid of 1 ft by 1 ft cells.

In order to have sufficient data to reliably estimate these surfaces, we assume that

player FG%’s are lineup independent. We recognize this assumption may be violated in

some cases, as players who draw significant defensive attention can improve the FG%

of their teammates by providing them with more unguarded shot opportunities. We

do not incorporate defensive pressure in our model since data on defender locations are
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not available publicly, but this is a promising direction for future work given access to

proprietary data sources.

2.2 Determining FGA Rate Surfaces

Player FGA rate varies drastically depending on the other players in the lineup. Con-

sider the Oklahoma City Thunder in the introductory example—Russell Westbrook’s

teammates’ attempt rates change drastically based on whether Westbrook is on or off

the court. For this reason, when estimating player-specific FGA rate surfaces we also

condition on lineup.

The additional sparsity introduced by conditioning a player’s FGA rate on lineup

does not pose a serious challenge in the estimation. This is because we view a player’s

decision to shoot the ball as being completely within their control and hence non-random.

Therefore, while we still require a model to interpolate FGA rate over the offensive half

court, we incorporate no uncertainty in the estimated surfaces, instead treating them as

deterministic.

We determine a player’s lineup-specific FGA rate surface following three steps. First,

we filter a player’s collection of shots to those taken in the lineup of interest. Next, we

smooth these shot attempts via a LGCP and scale the resulting intensity function to

exactly yield the player’s observed number of shot attempts in that lineup. Lastly, we

normalize the surface to FGA per 36 minutes, allowing us to make meaningful compar-

isons between lineups who differ in the number of minutes played. As with the FG%

surfaces (ξξξ), we partition the court into 1ft by 1ft grid cells and denote player j’s FGA

rate at the centroid of grid cell i as Aij.

3 Allocative Efficiency Metrics

The models for FG% and FGA rate described in Section 2 are the backbone of the

allocative efficiency metrics we introduce in this section: lineup points lost (LPL) and

player LPL contribution (PLC). Before getting into the details, we emphasize that these

metrics are agnostic to the underlying FG% and FGA models. It is entirely possible

to implement the metrics in this section using crude estimates of FG% and FGA rate,

for example, by dividing the court into discrete regions and using the empirical FG%

and FGA rate within each region. Of course, with better FG% and FGA estimates, the

allocative efficiency metrics will be more accurate.

LPL is the output of a two-step process. First, we redistribute a lineup’s observed

distribution of shot attempts according to a proposed optimum. This optimum is based

on ranking the five players in the lineup with respect to their FG% and FGA rate and then

redistributing the shot attempts such that the FG% ranks and FGA rate ranks match.

Second, we estimate how many points could’ve been gained had a lineup’s collection of
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shot attempts been allocated according to this alternate distribution. In this section we

go over each of these steps in detail and conclude by describing PLC, which measures

how individual players contribute to LPL.

3.1 Spatial Rankings Within Lineup

With models for player FG% and player-lineup FGA rate, we can rank the players in

a given lineup (from 1 to 5) on these metrics at any spot on the court. For a given

lineup, let RRRξ
i be a discrete transformation of ξξξi—the lineup’s FG% vector in court cell

i—yielding each player’s FG% rank relative to their four teammates. Formally,

Rξ
ij = {(nξi + 1)− k : ξij ≡ ξ

(k)
i }, (5)

where nξi is the length of ξξξi, the vector being ranked (this length will always be 5 in our

case), and ξ
(k)
i is the kth order statistic of ξξξi. Since ξij is a stochastic quantity governed by

a posterior distribution, Rξ
ij is also distributional, however its distribution is discrete, the

support being the integers {1, 2, 3, 4, 5}. The distribution of Rξ
ij can be approximated by

taking posterior samples of ξξξi and ranking them via (5). Figure 11 in the Appendix shows

the 20% quantiles, medians, and 80% quantiles of the resulting transformed variates for

the Cavaliers starting lineup.

We can obtain ranks for FGA rates in the same manner as for FG%, except these will

instead be deterministic quantities since the FGA rate surfaces, AAA, are fixed. We define

RA
ij as

RA
ij = {(nAi + 1)− k : Aij ≡ A

(k)
i }, (6)

where nAi is the length of AAAi and A
(k)
i is the kth order statistic of AAAi. Figure 4 shows the

estimated maximum a posteriori3 (MAP) FG% rank surfaces, R̂RR
ξ
, and the deterministic

FGA rate rank surfaces, RRRA, for the Cleveland Cavalier’s starting lineup.

3For the FG% rank surfaces we use the MAP estimate in order to ensure the estimates are always in the
support of the transformation (i.e. to ensure R̂ξij ∈ {1, . . . , 5}). For parameters with continuous support,

such as ξ̂ξξ, the hat symbol denotes the posterior mean.
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Figure 4: Top: Estimated FG% ranks for the Cleveland Cavaliers’ starting lineup. Bottom:
Deterministic FGA rate ranks.

The strong correspondence between R̂RR
ξ

andRRRA shown in Figure 4 is not surprising; all

other factors being equal, teams would naturally want their most skilled shooters taking

the most shots and the worst shooters taking the fewest shots in any given location. By

taking the difference of a lineup’s FG% rank surface from its FGA rate rank surface,

RRRA− R̂RR
ξ
, we obtain a surface which measures how closely the lineup’s FG% ranks match

their FGA rate ranks. Figure 5 shows these surfaces for the Cavaliers’ starting lineup.

LeBron James JR Smith Kevin Love Kyrie Irving Tristan Thompson

Rank
Correspondence

4
3
2
1
0
−1
−2
−3
−4

Figure 5: Rank correspondence surfaces for the Cleveland Cavaliers’ starting lineup.

Note that rank correspondence ranges from -4 to 4. A value of -4 means that the

worst shooter in the lineup is took the most shots from that location, while a positive

4 means the best shooter took the fewest shots from that location. In general, positive

values of rank correspondence mark areas of potential under-usage and negative values

show potential over-usage. For the Cavaliers, the positive values around the 3-point line

for Kyrie Irving suggest that he may be under-utilized as a 3-point shooter. On the
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other hand, the negative values for Lebron James in the mid-range region suggest that

he may be over-used in this area. We emphasize, however, that conclusions should be

made carefully. Though inequality between the FG% and FGA ranks may be indicative

of sub-optimal shot allocation, this interpretation may not hold in every situation due to

confounding variables (e.g. defensive pressure, expiring shot clock, etc.).

3.2 Lineup Points Lost

By reducing the FG% and FGA estimates to ranks we compromise the magnitude of

player-to-player differences within lineups. For example, if Irving, James, and Thompson

are ranked one, two, and three, respectively in a given court location, then the ranked

distance between Irving and James is equivalent to the ranked distance between James

and Thompson, despite the fact that FG%’s for James and Irving might be much closer

in value than the FG%’s for James and Thompson. Here we introduce lineup points lost

(LPL), which measures deviation from perfect rank correspondence while retaining the

magnitudes of player differences in FG% and FGA. LPL is defined as the difference in

expected points between a lineup’s actual distribution of FG attempts, AAA, and a proposed

redistribution, AAA∗, constructed to yield perfect rank correspondence (i.e. RRRA∗ −RRRξ = 000).

Formally, we calculate LPL in the ith cell as

LPLi =
5∑
j=1

vi · ξij ·
(
Ai[g(Rξij)]

− Aij
)

(7)

=
5∑
j=1

vi · ξij ·
(
A∗ij − Aij

)
(8)

where, with respect to court cell i, g(Rξ
ij) = {k : Rξ

ij ≡ RA
ik}, vi is the point value (2 or

3) of a made shot, ξij is the FG% for player j, and Aij is player j’s FG attempts (per

36 minutes). The function g(·) simply serves to reallocate the shot attempt vector AAAi

such that the best shooter always takes the most shots, the second best shooter takes the

second most shots, and so forth.

We note that LPL incorporates an intentional constraint—for any court cell i, AAA∗i
is constrained to be a permutation of AAAi. This ensures that no single player can be

reallocated every shot that was taken by the lineup. It also ensures that the total number

of shots in the redistribution will always equal the observed number of shots from that

location
(
i.e.

∑5
j=1Aij =

∑5
j=1A

∗
ij, for all i

)
. The left plot of Figure 6 shows LPL (per

36 minutes) over the offensive half court for Cleveland’s starting lineup.
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Figure 6: LPL and LPL per shot surfaces for the Cleveland Cavaliers’ starting lineup.

Notice that LPL values are highest around the rim and along the 3-point line. These

regions tend to dominate LPL values because the density of shot attempts is highest in

these areas. If we re-normalize LPL with respect to the number of shots taken in each

court cell we can identify areas of inefficiency that do not stand out due to low densities

of shot attempts:

LPLShoti =
LPLi∑5
j=1Aij

. (9)

This formulation gives us the average lineup points lost per shot from region i. This

surface is shown in the right plot of Figure 6.

Ultimately, LPL aims to quantify the points that could have been gained had a lineup

adhered to the shot allocation strategy defined by AAA∗. However, as will be detailed in

Section 4, there is not a 1-to-1 relationship between ‘lineup points’ as defined here, and

actual points. In other words, if a lineup reduces their total LPL by 1, this doesn’t

necessarily correspond to a 1-point gain in their actual score. In fact, we find that a

1-point reduction in LPL corresponds to a 0.6-point gain (on average) in a team’s actual

score. One reason for this discrepancy may be due to a tacit assumption in our definition

of LPL. By holding each player’s FG% constant despite changing their volume of shots

when redistributing the vector of FG attempts, we implicitly assume that a player’s FG%

is independent of their FGA rate. The basketball analytics community generally agrees

that this assumption does not hold—that the more shots a player is allocated, the less

efficient their shots become. This concept, typically referred to as the ‘usage-curve’ or

‘skill-curve’, was introduced by Oliver in [11] and has been further examined by Goldman

in [4]. Incorporating player-specific usage curves into LPL could be a promising area of

future work.
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3.3 Player LPL Contribution

LPL summarizes information from all players in a lineup into a single surface which

compromises our ability to identify how each individual player contributes to LPL. For-

tunately, we can parse out each player’s contribution to LPL and even distinguish between

points lost due to undershooting and points lost due to overshooting. We define player

j’s LPL contribution (PLC)in court location i as

PLCij = LPLi ×

(
A∗ij − Aij∑5

j=1 |A∗ij − Aij|

)
, (10)

where all terms are as defined in the previous section. The parenthetical term in (10)

apportions LPLi among the 5 players in the lineup proportional to the size of their indi-

vidual contributions to LPLi. Players who are reallocated more shots under AAA∗i compared

to their observed number of shot attempts will have PLCij > 0. Therefore, positive PLC

values indicate potential undershooting and negative values indicate potential overshoot-

ing. As in the case of LPL, if we divide PLC by the sum of shot attempts in cell i we

obtain average PLC per shot from location i:

PLCShot
i =

PLCi∑5
j=1Aij

. (11)

The PLCShot
i surfaces for the Cleveland Cavaliers’ 2016-17 starting lineup are shown

in Figure 7. We see that Kyrie Irving is potentially being under-utilized from beyond the

arc and that Lebron James is potentially over-shooting from the top of the key, which

is harmonious with our observations from Figure 5. However, it’s worth noting that the

LPL per 36 plot (left plot in Figure 6) shows very low LPL values from the mid-range

region since the Cavaliers have a very low density of shots from this area. So while it may

be true that conditional on a shot attempt Lebron tends to overshoot from the top of the

key, the lineup shoots so infrequently from this area that the inefficiency is negligible.

LeBron James JR Smith Kevin Love Kyrie Irving Tristan Thompson

−0.04

−0.02

0.00

0.02

PLC per shot

Figure 7: PLC per shot surfaces for the Cleveland Cavaliers’ starting lineup.
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As a final note, notice that for every red region (undershooting) there are correspond-

ing blue regions (overshooting) among the other players. This highlights the fact that

LPL is made up of balancing player contributions from undershooting and overshooting;

for every player who overshoots, another player (or combination of players) undershoots.

By nature of how LPL is constructed, there cannot be any areas where the entire lineup

overshoots or undershoots. For this reason, our method does not shed light on shot selec-

tion. LPL and PLC say nothing about whether shots from a given region are efficient or

not, instead they measure how efficiently a lineup adheres to optimal allocative efficiency

given the shot attempts from that region.

4 Optimality - Discussion and Implications

We have now defined LPL and given the theoretical interpretation (i.e. over-use and

under use), but we have not yet established that this interpretation is valid in practice.

The legitimacy of using LPL as a diagnostic tool for evaluating allocative efficiency hinges

on the answers to three important questions:

1. Do lineups minimize LPL?

2. Does LPL relate to offensive production?

3. Is minimizing LPL always optimal?

In this section we explore each of these questions in detail and provide analysis to support

our conclusions.

4.1 Do lineups minimize LPL?

While the low values of LPL displayed in Figure 6 (cell values range from 0 to .008 and

the sum over all locations in the half court is 0.68) suggest that the Cavaliers starters

were minimizing LPL, without a frame of reference we cannot make this claim with

certainty. The frame of reference we will use for comparison is the distribution of LPL

under completely random shot allocation. In statistical terms, this comparison can be

stated as a hypothesis test. We are interested in testing the null hypothesis that shot

allocation is random relative to shooter skill to the alternative, that shooter skill informs

shot allocation.

A permutation test allows us to test these hypotheses by comparing a lineup’s observed

total LPL (summing over all court locations,
∑M

i LPLi, where M is the total number

of 1ft by 1ft cells in the half court) against the distribution of total LPL that we would

expect under completely random shot allocation. We can simulate variates from this

distribution via

M∑
i

L̃PL
H0

i =
M∑
i

5∑
j=1

vi · ξ̂ij ·
(
A∗ij − Ãij

)
(12)
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where ξ̂ij is player j’s posterior mean FG% in cell i, Ãij is the jth element of a random

permutation of the observed FGA rate vector AAAi, and all other symbols are defined as

in (7-8). Note that a different random permutation is drawn for each court cell i. After

simulating 500 variates from the null distribution, we approximate the one-sided p-value

of the test as the proportion of variates that are less than the observed sum of LPL,∑M
i LPLi.

Figure 8 illustrates this test for the Cleveland Cavaliers’ starting lineup. The gray

bars show a histogram of the variates from (12) while the red dotted line marks the

actual value of total LPL,
∑M

i LPLi. Needless to say, the p-value of the test is essentially

0. We can therefore say with certainty that the Cleveland starters do not randomly

allocate shots among their players—there is at least some degree of minimization that

is occurring. The computational burden of performing the test precludes performing it

for every lineup, but we did perform the test for each team’s 2016-17 starting lineup.

For every team’s starting lineup, there were no variates from the null distribution less

than their observed sum of LPL with one exception: 11 of the 500 variates from H0 were

less than
∑M

i LPLi for the Sacramento Kings, yielding an approximate p-value of 0.022

for their team. Based on these results we are confident that most lineups employ shot

allocation strategies that minimize LPL to some degree, though it appears that some

teams do so better than others.

Permutation test of H0 vs HA

∑
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Figure 8: Permutation test illustration for the Cleveland Cavaliers’ 2016-17 starting lineup.
The gray bars show a histogram of the variates from (12). The red dotted line is the actual
value of total LPL. This value was less than every variate in the histogram by a wide margin.
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4.2 Does LPL relate to offensive production?

We next want to determine whether teams with lower LPL values tend to be more profi-

cient on offense. In order to achieve greater discriminatory power, we’ve chosen to make

this assessment at the game level. Specifically, we regress a team’s total game score

against their total LPL generated in that game, accounting for other relevant covari-

ates including the team’s offensive strength, the opponents’ defensive strength, and home

court advantage. This framework is analogous to the model proposed by Dixon and Coles

in [12].

To calculate LPL at the game level, we must make a few modifications to the LPL

construct. As defined in Section 3, LPL reallocates a lineup’s total FGA attempts from

the entire season (normalized to a per 36 minute rate) over a 1ft by 1ft spatial grid.

Because the FGA rate surfaces are based on season totals, projecting them over this fine

spatial grid is feasible. Unfortunately, this is not true for individual games. At the game

level, 1ft by 1ft cells (usually) have at most 1 observed shot attempt for each lineup, hence

LPL amounts to reallocating every shot to the best shooter in each location. Essentially,

no other players are allocated any shots.

To avoid this issue, we calculate game LPL (GLPL) at a much coarser resolution.

We divide the court into three broad court regions (restricted area, mid-range, and 3-

pointers), then for a given game and lineup, we calculate GLPL in each of these court

regions (indexed by c) by redistributing the lineups’ observed vector of shot attempts

based on a weighted average of each player’s ξ̂ξξj:

GLPLc =
5∑
j=1

vc · fc(ξ̂ξξj) ·
(
A∗cj − Acj

)
(13)

where

fc(ξ̂ξξj) =

∑
i∈cwij ξ̂ij∑
i∈cwij

. (14)

In (14), wij is a weight proportional to player j’s total observed shot attempts in court

cell i over the regular season. The notation
∑

i∈c simply means we are summing over all

the 1ft by 1ft grid cells that are contained in court region c. Finally, for a given game g

and team a, we calculate the team’s total game LPL (TGLPL) by summing GLPLc over

all court regions c and all lineups `:

TGLPLag =
La∑
`=1

∑
c∈C

GLPL`c (15)

where C = {restricted area, mid-range, 3-pointers} and La is the total number of team

a’s lineups. This process is carried out separately for the home and away teams, yielding
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two TGLPL observations per game and allowing us to include TGLPL as a covariate in

a model of offensive proficiency.

We model team a’s game score against opponent b in game g as

Scoreabg = µ+ αa + βb + γ × I(Homeag) + θ × TGLPLag + εabg (16)

εabg ∼ N(0, σ2) (17)

where µ represents the global average game score, αa is team a’s offensive strength pa-

rameter, βb is team b’s defensive strength parameter, γ governs home court advantage, θ

is the effect of TGLPL, and εabg is a normally distributed error term. θ is the parameter

that we are primarily concerned with. We fit this model in a Bayesian framework using

Hamiltonian Monte Carlo methods implemented in Stan [13]. Our prior distributions are

as follows: µ ∼ N(100, 102); αa, βb, γ, θ ∼ N(0, 102); σ ∼ Gamma(shape = 2, rate = 0.2).

The 95% highest posterior density interval for θ is (-1.08, -0.17) and the posterior mean

is −0.62. Therefore, under the posterior mean, we estimate that for each additional lineup

point lost a team loses 0.62 actual points. Put differently, by shaving roughly 3 points

off of their TGLPL, a team could gain an estimated 2 points in a game. Given that

10% of games were decided by 2 points or less in the 2016-17 season, this could have a

significant impact a team’s win-loss record and could even have playoff implications for

teams on the bubble. Figure 9 shows the estimated density of actual points lost for every

team’s 82 games in the 2016-17 NBA regular season (i.e. density of θ̂ × TGLPLag, g ∈
{1, . . . , 82} for each team a). Houston was the most efficient team, only losing about 1

point per game on average due to inefficient shot allocation. Washington, on the other

hand, lost over 3 points per game on average from inefficient shot allocation.
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Figure 9: Estimated density of actual points lost for every team’s 82 games in the 2016-17 NBA
regular season.

4.3 Is minimizing LPL always optimal?

While we have demonstrated that lower LPL is associated with increased offensive pro-

duction, we stress that LPL is a diagnostic tool that should be used to inform basketball

experts rather than as a prescriptive measure that should be strictly adhered to in all

circumstances. There are certain game situations where minimizing LPL may be sub-

optimal.

One such situation is illustrated in Figure 10. The first panel from the left in this

figure shows positive PLC values for Russell Westbrook in both the right and left corner

3-point regions, suggesting that Westbrook should be taking more shots from these areas.

However, anyone who watched the Thunder play that season will know that many of these
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corner 3-point opportunities were created by Westbrook driving to the basket, drawing

extra defenders toward him, and subsequently kicking the ball out to an open teammate

in the corner. Obviously, Westbrook cannot both drive to the rim and simultaneously

pass to himself in the corner. In this case, if the Thunder strictly minimized LPL it would

reduce the number of these drive-and-kick plays, potentially attenuating their offensive

firepower. Shot-creation is not accounted for by LPL and should be carefully considered

when exploring LPL and PLC.

Russell Westbrook Andre Roberson Steven Adams Victor Oladipo Domantas Sabonis

−0.10

−0.05

0.00

0.05

0.10

PLC per shot
Median

Figure 10: Oklahoma City 2016-17 starting lineup PLC per shot surfaces.

There are game theoretic factors to be considered as well. Rigid adherence to mini-

mizing LPL could lead to a more predictable offense and thus make it easier to defend.

D’Amour et. al. [14] demonstrated that increased unpredictability in an offense led to

more shot opportunities, so having worse shooters take more shots from a given region

could potentially confuse defenses leading to more open shot opportunities. Needless to

say, offensive game-planning should be informed by more than LPL metrics alone.

5 Conclusion

Our research introduces novel methods to evaluate allocative efficiency spatially and

shows that this efficiency has a real impact on game outcomes. The approach we take

uses publicly available data and our code base is available online, allowing our methods

to be immediately utilized by teams and analysts. Our methods are also simple enough

that they could easily be implemented at G-league, NCAA, and international levels. The

examples we have shown here provide just a few examples of how LPL can be used to

help teams identify areas where they could improve shot allocation among their lineups.

There are many promising directions for future work. As mentioned previously, we do

not account for usage curves in our analysis. Doing so would turn LPL into a complex

constrained optimization problem, which would be fascinating challenge to tackle. There

are also a number of contextual variables which we do not account for but that, with
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access to proprietary data, present valuable opportunities for improvement of the FG%

model and LPL estimation. For example, our estimates could be improved by accounting

for defensive pressure and by omitting play types that do not follow the underlying

assumptions for allocative efficiency, such as fast breaks, drive-and-kick plays, and double

teams. Additionally, by pairing LPL with play call data coaches could gain insight into

the efficiency of specific plays. Finally, using LPL to inform player-specific shot policy

changes, entire seasons could be simulated using the method in [15] to quantify the

impact of specific shot allocation changes on point production. We hope that teams and

researchers not only utilize but build upon the methods presented here.
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6 Appendix
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Figure 11: Top: 20% quantiles of the Cleveland Cavaliers’ starting lineup posterior distributions
of FG% ranks. Middle: medians of these distributions. Bottom: 80% quantiles.
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